Quantization of affine function spaces

Anindya Ghatak

Joint work with

Anil Kumar Karn

23.08.2019

- Let K be a compact convex set in a locally convex space E.
- $a: K \to \mathbb{R}$ is affine map if

$$a(\lambda u + (1 - \lambda)v) = \lambda a(u) + (1 - \lambda)a(v)$$

for all $u, v \in K$ and $\lambda \in [0, 1]$.

- Let K be a compact convex set in a locally convex space E.
- $a: K \to \mathbb{R}$ is affine map if

$$a(\lambda u + (1 - \lambda)v) = \lambda a(u) + (1 - \lambda)a(v)$$

for all $u, v \in K$ and $\lambda \in [0, 1]$.

• A(K): the set of all continuous affine functions on K.

• A C*-algebra $\mathcal A$ is a Banach *-algebra which satisfies C*-condition

$$||x^*x|| = ||x||^2 \qquad \forall x \in \mathcal{A}.$$

- \mathcal{A}_{sa} : the set of all self-adjoint element of \mathcal{A}
- \mathcal{A}^+ : the set of all positive elements of \mathcal{A} (i.e. $a \in \mathcal{A}^+$ if $a = b^*b$ for some $b \in \mathcal{A}$).

• A C^* -algebra $\mathcal A$ is a Banach *-algebra which satisfies C^* -condition

$$||x^*x|| = ||x||^2 \qquad \forall x \in \mathcal{A}.$$

- \mathcal{A}_{sa} : the set of all self-adjoint element of \mathcal{A}
- \mathcal{A}^+ : the set of all positive elements of \mathcal{A} (i.e. $a \in \mathcal{A}^+$ if $a = b^*b$ for some $b \in \mathcal{A}$).

Kadison's observation

Let $\mathcal{B} \subset \mathcal{A}$ be a unital self-adjoint subspace. Let $\mathcal{B}^+ = \mathcal{B} \cap \mathcal{A}^+$.

Then $(\mathcal{B}_{sa}, \mathcal{B}^+, I)$ is an **order unit space**. That is

• A C*-algebra \mathcal{A} is a Banach *-algebra which satisfies C*-condition

$$||x^*x|| = ||x||^2 \qquad \forall x \in \mathcal{A}.$$

- \mathcal{A}_{sa} : the set of all self-adjoint element of \mathcal{A}
- \mathcal{A}^+ : the set of all positive elements of \mathcal{A} (i.e. $a \in \mathcal{A}^+$ if $a = b^*b$ for some $b \in \mathcal{A}$).

Kadison's observation

Let $\mathcal{B} \subset \mathcal{A}$ be a unital self-adjoint subspace. Let $\mathcal{B}^+ = \mathcal{B} \cap \mathcal{A}^+$.

Then $(\mathcal{B}_{sa}, \mathcal{B}^+, I)$ is an **order unit space**. That is

• (order unit property) $b \in B \implies -\lambda I \le b \le \lambda I$ for some $\lambda > 0$.

• A C^* -algebra $\mathcal A$ is a Banach *-algebra which satisfies C^* -condition

$$||x^*x|| = ||x||^2 \qquad \forall x \in \mathcal{A}.$$

- \mathcal{A}_{sa} : the set of all self-adjoint element of \mathcal{A}
- \mathcal{A}^+ : the set of all positive elements of \mathcal{A} (i.e. $a \in \mathcal{A}^+$ if $a = b^*b$ for some $b \in \mathcal{A}$).

Kadison's observation

Let $\mathcal{B} \subset \mathcal{A}$ be a unital self-adjoint subspace. Let $\mathcal{B}^+ = \mathcal{B} \cap \mathcal{A}^+$.

Then $(\mathcal{B}_{sa}, \mathcal{B}^+, I)$ is an **order unit space**. That is

- (order unit property) $b \in B \implies -\lambda I \le b \le \lambda I$ for some $\lambda > 0$.
- ② (Archimedean property) if $b + \lambda I \ge 0$ for all $\lambda > 0$ for some $b \in A \implies b \ge 0$.

• A linear function $f: \mathcal{B} \to \mathbb{C}$ is called **state** if

$$f(\mathcal{B}^+)\subseteq [0,\infty)$$
 and $f(1)=1$.

• A linear function $f: \mathcal{B} \to \mathbb{C}$ is called **state** if

$$f(\mathcal{B}^+)\subseteq [0,\infty)$$
 and $f(1)=1$.

- S(B): the set of all state of B.
- S(B) is a w^* -compact convex set.

• A linear function $f: \mathcal{B} \to \mathbb{C}$ is called **state** if

$$f(\mathcal{B}^+)\subseteq [0,\infty)$$
 and $f(1)=1$.

- $S(\mathcal{B})$: the set of all state of \mathcal{B} .
- S(B) is a w^* -compact convex set.

Theorem (Kadison–1951)

 \mathcal{B}_{sa} is isometrically order isomorphic to A(K), where $K = S(\mathcal{B})$.

• A linear function $f: \mathcal{B} \to \mathbb{C}$ is called **state** if

$$f(\mathcal{B}^+)\subseteq [0,\infty)$$
 and $f(1)=1$.

- S(B): the set of all state of B.
- S(B) is a w^* -compact convex set.

Theorem (Kadison–1951)

 \mathcal{B}_{sa} is isometrically order isomorphic to A(K), where $K = S(\mathcal{B})$.

Problem: Is it possible to construct a **compact convex set** K such that

$$A(K)\cong \mathcal{B}_{sa},$$

where ${\cal B}$ is a unital self-adjoint subspace of a ${\rm C}^*$ -algebra.

Non-comutaive order, Effros-1976

ullet Non self-adjoint characterization : Let $a\in\mathcal{B}.$ Then $\|a\|\leq 1$ if and only if

$$\begin{bmatrix} 1 & a \\ a^* & 1 \end{bmatrix} \in M_2(\mathcal{B})^+.$$

Non-comutaive order, Effros-1976

ullet Non self-adjoint characterization : Let $a\in\mathcal{B}.$ Then $\|a\|\leq 1$ if and only if

$$\begin{bmatrix} 1 & a \\ a^* & 1 \end{bmatrix} \in M_2(\mathcal{B})^+.$$

• If $a \in \mathcal{B}$, then

$$||a|| = \inf\{\lambda \ge 0 : \begin{bmatrix} \lambda I & a \\ a^* & \lambda I \end{bmatrix} \ge 0\}.$$

Non commutative ordered in abstract space

Definition (Choi, Effros-77)

Let V be a complex *-vector space. Then V is called **matrix** ordered space if there is a cone $M_n(V)^+ \subset M_n(V)_{sa}$ for each n such that

$$\gamma^* M_m(V)^+ \gamma \subset M_n(V)^+$$

if $\gamma \in \mathbb{M}_{m,n}$.

Non commutative ordered in abstract space

Definition (Choi, Effros-77)

Let V be a complex *-vector space. Then V is called **matrix** ordered space if there is a cone $M_n(V)^+ \subset M_n(V)_{sa}$ for each n such that

$$\gamma^* M_m(V)^+ \gamma \subset M_n(V)^+$$

if $\gamma \in \mathbb{M}_{m,n}$.

- $\phi: V \to W$ be a linear map (V, W vector spaces).
- (*n*-amplification) $\phi_n: M_n(V) \to M_n(W)$ by

$$\phi_n([v_{i,j}]) = [\phi(v_{i,j})].$$

Non commutative ordered in abstract space

Definition (Choi, Effros-77)

Let V be a complex *-vector space. Then V is called **matrix** ordered space if there is a cone $M_n(V)^+ \subset M_n(V)_{sa}$ for each n such that

$$\gamma^* M_m(V)^+ \gamma \subset M_n(V)^+$$

if $\gamma \in \mathbb{M}_{m,n}$.

- $\phi: V \to W$ be a linear map (V, W vector spaces).
- (*n*-amplification) $\phi_n: M_n(V) \to M_n(W)$ by

$$\phi_n([v_{i,j}]) = [\phi(v_{i,j})].$$

• Let V,W be matrix ordered spaces and $\phi:V\to W$ be a self-adjoint linear map. Then ϕ is **completely positive** if ϕ_n is

positive for each n.

Operator systems

Theorem (Choi-Effros-1977)

Let $(V, \{M_n(V)^+\})$ be a matrix ordered space and let e be an order unit for V^+ . Then following are equivalent

- **1** V^+ is proper and $M_n(V)^+$ Archimedean for each n
- **2** there exists **cp-map** $\varphi: V \to \mathcal{B}(H)$ for some Hilbert space H.

Operator systems

Theorem (Choi-Effros-1977)

Let $(V, \{M_n(V)^+\})$ be a matrix ordered space and let e be an order unit for V^+ . Then following are equivalent

- **1** V^+ is proper and $M_n(V)^+$ Archimedean for each n
- **2** there exists **cp-map** $\varphi: V \to \mathcal{B}(H)$ for some Hilbert space H.

Let V be a complex vector space, and let $\|.\|_n$ be a norm on $M_n(V)$. Then V is called a **matrcially normed space** if

- **2** $||v \oplus 0||_{n+m} = ||v||_n$ for all $v \in M_n(V)$.

ullet Let $(V,\{\|.\|\})$ be a matrcially normed space.

- Let $(V, \{\|.\|\})$ be a matrially normed space.
- Then V is called L^{∞} -matricially normed space if

$$||v \oplus w||_{n+m} = \max\{||v||_n, ||w||_m\}$$

for all $v \in M_n(V)$, $w \in M_m(V)$.

- Let $(V, \{\|.\|\})$ be a matrially normed space.
- Then V is called L^{∞} -matricially normed space if

$$||v \oplus w||_{n+m} = \max\{||v||_n, ||w||_m\}$$

for all $v \in M_n(V)$, $w \in M_m(V)$.

ullet Let $\phi:V o W$ be a linear map. Then ϕ is **completely bounded** if

$$\|\phi\|_{CB} := \sup\{\|\phi_n\|_n : n \in \mathbb{N}\} < \infty;$$

- Let $(V, \{\|.\|\})$ be a matrially normed space.
- Then V is called L^{∞} -matricially normed space if

$$||v \oplus w||_{n+m} = \max\{||v||_n, ||w||_m\}$$

for all $v \in M_n(V)$, $w \in M_m(V)$.

ullet Let $\phi:V o W$ be a linear map. Then ϕ is **completely bounded** if

$$\|\phi\|_{CB} := \sup\{\|\phi_n\|_n : n \in \mathbb{N}\} < \infty;$$

• ϕ is called **completely isometry** if ϕ_n is isometry for each $n \in \mathbb{N}$.

- Let $(V, \{\|.\|\})$ be a matrially normed space.
- Then V is called L^{∞} -matricially normed space if

$$||v \oplus w||_{n+m} = \max\{||v||_n, ||w||_m\}$$

for all $v \in M_n(V)$, $w \in M_m(V)$.

• Let $\phi:V\to W$ be a linear map. Then ϕ is **completely bounded** if

$$\|\phi\|_{CB} := \sup\{\|\phi_n\|_n : n \in \mathbb{N}\} < \infty;$$

• ϕ is called **completely isometry** if ϕ_n is isometry for each $n \in \mathbb{N}$.

Theorem (Ruan-1988)

Let $(V, \{\|\cdot\|_n\})$ be a matricially normed space. Then V is an L^{∞} -matricially normed space \iff there is a **complete isometry** $\phi: V \to \mathcal{B}(H)$ for some Hilbert space H.

C*-ordered operator space

Definition

Let $(V, \{M_n(V)^+\})$ be a matrix ordered space together with an L^{∞} -matricial norm $\{\|\cdot\|_n\}$ is said to be a C*-ordered operator space if V^+ is proper and for each $n \in \mathbb{N}$, satisfies the following:

- * is isometry on $M_n(V)$;
- $M_n(V)^+$ is **closed**;

C*-ordered operator space

Definition

Let $(V, \{M_n(V)^+\})$ be a matrix ordered space together with an L^{∞} -matricial norm $\{\|\cdot\|_n\}$ is said to be a C*-ordered operator space if V^+ is proper and for each $n \in \mathbb{N}$, satisfies the following:

- * is isometry on $M_n(V)$;
- $M_n(V)^+$ is **closed**;

Theorem (Karn, 2011)

Let $(V, \{M_n(V)^+\})$ be a matrix ordered space with an L^{∞} -matricial norm $\{\|\cdot\|_n\}$.

Then V is a C*-ordered operator space \iff there exists a completely order isomerty $\varphi: V \to \mathcal{A}$ for some C*-algebra \mathcal{A} .

- *V* : a locally convex space
- $K \subseteq V$ be a compact convex set, and $0 \in \text{ext}(K)$.

- V : a locally convex space
- $K \subseteq V$ be a compact convex set, and $0 \in \text{ext}(K)$.

Definition (G.-Karn)

An element $k \in K$ is called a **lead point** of K ($k \in \text{lead}(K)$) if $k = \alpha k_1$ for some $k_1 \in K$ with $\alpha \in [0, 1]$, then $\alpha = 1$.

- *V* : a locally convex space
- $K \subseteq V$ be a compact convex set, and $0 \in \text{ext}(K)$.

Definition (G.-Karn)

An element $k \in K$ is called a **lead point** of K ($k \in \text{lead}(K)$) if $k = \alpha k_1$ for some $k_1 \in K$ with $\alpha \in [0, 1]$, then $\alpha = 1$.

• (Observation:) $ext(K) \setminus \{0\} \subset lead(K)$.

- *V* : a locally convex space
- $K \subseteq V$ be a compact convex set, and $0 \in \text{ext}(K)$.

Definition (G.-Karn)

An element $k \in K$ is called a **lead point** of K ($k \in \text{lead}(K)$) if $k = \alpha k_1$ for some $k_1 \in K$ with $\alpha \in [0, 1]$, then $\alpha = 1$.

• (Observation:) $ext(K) \setminus \{0\} \subset lead(K)$.

Theorem (G.-Karn)

For each $k \in K \setminus \{0\}$. There is a unique $\alpha \in (0,1]$ and $\widehat{k} \in \text{lead}(K)$ such that $k = \alpha \widehat{k}$.

Quantization

• In operator space, **quantization** is a method to construct an operator space from a given Banach space.

Quantization

- In operator space, **quantization** is a method to construct an operator space from a given Banach space.
- (Recall) $K_n \in M_n(V)_{sa}$ and $0 \in \text{ext}\{K_n\}$.
- **Reformulation of the problem:** Is it possible to find a sequence $\{K_n\}$ of **compact convex** set so that the affine spaces over K_n is turn out to a C*-ordered operator space ?

L^1 -matrix convex set (G.-Karn)

Let V be a *-locally convex space. Let $\{K_n\}$ be a collection of compact convex sets with $K_n \subset M_n(V)_{sa}$ and $0 \in \partial_e(K_n)$ for all n. Then $\{K_n\}$ is called an L^1 -matrix convex set if the following conditions hold:

L₁ If $u \in K_n$ and $\gamma_i \in \mathbb{M}_{n,n_i}$ such that $\sum_{i=1}^k \gamma_i \gamma_i^* \leq I_n$, then $\bigoplus_{i=1}^k \gamma_i^* u \gamma_i \in K_{\sum_{i=1}^k n_i}$.

L^1 -matrix convex set (G.-Karn)

Let V be a *-locally convex space. Let $\{K_n\}$ be a collection of compact convex sets with $K_n \subset M_n(V)_{sa}$ and $0 \in \partial_e(K_n)$ for all n. Then $\{K_n\}$ is called an L^1 -matrix convex set if the following conditions hold:

- **L**₁ If $u \in K_n$ and $\gamma_i \in \mathbb{M}_{n,n_i}$ such that $\sum_{i=1}^k \gamma_i \gamma_i^* \leq I_n$, then $\bigoplus_{i=1}^k \gamma_i^* u \gamma_i \in K_{\sum_{i=1}^k n_i}$.
- **L**₂ If $u \in K_{2n}$ so that $u = \begin{bmatrix} u_{11} & u_{12} \\ u_{12}^* & u_{22} \end{bmatrix}$ for some $u_{11}, u_{22} \in K_n$ and $u_{12} \in M_n(V)$, then $u_{12} + u_{12}^* \in \text{co}(K_n \cup -K_n)$.

L^1 -matrix convex set (G.-Karn)

Let V be a *-locally convex space. Let $\{K_n\}$ be a collection of compact convex sets with $K_n \subset M_n(V)_{sa}$ and $0 \in \partial_e(K_n)$ for all n. Then $\{K_n\}$ is called an L^1 -matrix convex set if the following conditions hold:

- **L**₁ If $u \in K_n$ and $\gamma_i \in \mathbb{M}_{n,n_i}$ such that $\sum_{i=1}^k \gamma_i \gamma_i^* \leq I_n$, then $\bigoplus_{i=1}^k \gamma_i^* u \gamma_i \in K_{\sum_{i=1}^k n_i}$.
- **L**₂ If $u \in K_{2n}$ so that $u = \begin{bmatrix} u_{11} & u_{12} \\ u_{12}^* & u_{22} \end{bmatrix}$ for some $u_{11}, u_{22} \in K_n$ and $u_{12} \in M_n(V)$, then $u_{12} + u_{12}^* \in \text{co}(K_n \cup -K_n)$.
- **L**₃ Let $u \in K_{m+n}$ with $u = \begin{bmatrix} u_{11} & u_{12} \\ u_{12}^* & u_{22} \end{bmatrix}$ so that $u_{11} \in K_m, u_{22} \in K_n$ and $u_{12} \in M_{m,n}(V)$ and if $u_{11} = \alpha_1 \widehat{u_{11}}, u_{22} = \alpha_{22} \widehat{u_{22}}$ with $\widehat{u_{11}} \in \text{lead}(K_m), \widehat{u_{22}} \in \text{lead}(K_n)$, then $\alpha_1 + \alpha_2 \leq 1$.

L^1 -matrix convex set (G.-Karn)

Let V be a *-locally convex space. Let $\{K_n\}$ be a collection of compact convex sets with $K_n \subset M_n(V)_{sa}$ and $0 \in \partial_e(K_n)$ for all n. Then $\{K_n\}$ is called an L^1 -matrix convex set if the following conditions hold:

- **L**₁ If $u \in K_n$ and $\gamma_i \in \mathbb{M}_{n,n_i}$ such that $\sum_{i=1}^k \gamma_i \gamma_i^* \leq I_n$, then $\bigoplus_{i=1}^k \gamma_i^* u \gamma_i \in K_{\sum_{i=1}^k n_i}$.
- **L**₂ If $u \in K_{2n}$ so that $u = \begin{bmatrix} u_{11} & u_{12} \\ u_{12}^* & u_{22} \end{bmatrix}$ for some $u_{11}, u_{22} \in K_n$ and $u_{12} \in M_n(V)$, then $u_{12} + u_{12}^* \in \text{co}(K_n \cup -K_n)$.
- **L**₃ Let $u \in K_{m+n}$ with $u = \begin{bmatrix} u_{11} & u_{12} \\ u_{12}^* & u_{22} \end{bmatrix}$ so that $u_{11} \in K_m, u_{22} \in K_n$ and $u_{12} \in M_{m,n}(V)$ and if $u_{11} = \alpha_1 \widehat{u_{11}}, u_{22} = \alpha_{22} \widehat{u_{22}}$ with $\widehat{u_{11}} \in \text{lead}(K_m), \widehat{u_{22}} \in \text{lead}(K_n)$, then $\alpha_1 + \alpha_2 \leq 1$.
- **•Example:** Let V be a C^* -ordered operator space. Then $\{Q_n(V)\}$ is an L^1 -matrix convex set with lead $(Q_n(V)) = S_n(V)$.

${A_0(K_n)}$ -Spaces

- Let V be a *-locally convex space,
- let $\{K_n\}$ be an L^1 -matrix convex set of V,
- $M_n(V)^+ := \bigcup_{r=1}^{\infty} rK_n$ is a cone in $M_n(V)_{sa}$ for all n
- with V^+ is proper and generating.

Define

$$A_0(K_n, M_n(V)) := \{a : K_n \to \mathbb{C} | a \text{ is continuous and affine;}$$

 $a(0) = 0; \text{ and } a \text{ extends to a continuous linear functional}$
 $\tilde{a} : M_n(V) \to \mathbb{C} \}.$

Main Theorem

Theorem (G.-Karn)

Let V be a C^* -ordered operator space.

 $\implies \{Q_n(V)\}$ is an L^1 -matrix convex.

Main Theorem

Theorem (G.-Karn)

Let V be a C^* -ordered operator space.

 $\implies \{Q_n(V)\}\$ is an L^1 -matrix convex.

Theorem (G.-Karn)

Let $\{K_n\}$ be an L^1 -matrix convex set of V.

 $\implies (A_0(K_1, V), \{M_n(A_0(K_1, V)^+\}, \{\|.\|_n\}) \text{ is a } C^*\text{-ordered operator space.}$

Sketch of the proof:

Step-1 Given $a \in A_0(K_n, M_n(V))$, we define

$$a^*(u) := \overline{a(u)}$$
 for all $u \in K_n$.

Sketch of the proof:

Step-1 Given $a \in A_0(K_n, M_n(V))$, we define

$$a^*(u) := \overline{a(u)}$$
 for all $u \in K_n$.

Step-2
$$A_0(K_n, M_n(V))_{sa} = \{a \in A_0(K_n, M_n(V)) : a^* = a\}.$$

Step-3 If $\alpha \in \mathbb{M}_{m,n}$, $\beta \in \mathbb{M}_{n,m}$ and $a \in A_0(K_n, M_n(V))$. We define

$$\alpha a \beta(v) := \tilde{a}(\alpha^T v \beta^T) \text{ for all } v \in K_m.$$

• Then $\alpha a\beta \in A_0(K_m, M_m(V))$

Step-3 If $\alpha \in \mathbb{M}_{m,n}$, $\beta \in \mathbb{M}_{n,m}$ and $a \in A_0(K_n, M_n(V))$. We define $\alpha a \beta(v) := \tilde{a}(\alpha^T v \beta^T)$ for all $v \in K_m$.

• Then $\alpha a\beta \in A_0(K_m, M_m(V))$

Step-4 If $a \in A_0(K_n, M_n(V))$ and $b \in A_0(K_m, M_m(V))$. We define

$$(a \oplus b)(v) := a(v_{11}) + b(v_{22}) \text{ for all } v \in K_{n+m},$$

where
$$v = \begin{bmatrix} v_{11} & v_{12} \\ v_{12}^* & v_{22} \end{bmatrix}$$
 for some $v_{11} \in K_n, v_{22} \in K_m, v_{12} \in M_{n,m}(V)$.

• Then $a \oplus b \in A_0(K_{n+m}, M_{n+m}(V))$.

Step-5

$$A_0(K_n, M_n(V))^+ := \{a \in A_0(K_n, M_n(V))_{sa} : a(u) \ge 0 \ \forall u \in K_n\}.$$

Step-5

$$A_0(K_n, M_n(V))^+ := \{a \in A_0(K_n, M_n(V))_{sa} : a(u) \geq 0 \ \forall u \in K_n\}.$$

- If $a \in A_0(K_m, M_m(V))^+$, $b \in A_0(K_n, M_n(V))^+$ and $\alpha \in \mathbb{M}_{m,n}$, we have
 - **1** $\alpha^* a \alpha \in A_0(K_n, M_n(V))^+,$

Step-5

$$A_0(K_n, M_n(V))^+ := \{a \in A_0(K_n, M_n(V))_{sa} : a(u) \geq 0 \ \forall u \in K_n\}.$$

- If $a \in A_0(K_m, M_m(V))^+$, $b \in A_0(K_n, M_n(V))^+$ and $\alpha \in \mathbb{M}_{m,n}$, we have
 - $\bullet \quad \alpha^* a \alpha \in A_0(K_n, M_n(V))^+,$
 - 2 $a \oplus b \in A_0(K_{m+n}, M_{m+n}(V))^+$.

Step-5

$$A_0(K_n, M_n(V))^+ := \{a \in A_0(K_n, M_n(V))_{sa} : a(u) \ge 0 \ \forall u \in K_n\}.$$

- If $a \in A_0(K_m, M_m(V))^+$, $b \in A_0(K_n, M_n(V))^+$ and $\alpha \in \mathbb{M}_{m,n}$, we have
 - $\bullet \quad \alpha^* a \alpha \in A_0(K_n, M_n(V))^+,$
 - 2 $a \oplus b \in A_0(K_{m+n}, M_{m+n}(V))^+$.

Step-6 $A_0(K_n, M_n(V))$ is a normed linear space equipped with norm

$$||a||_{\infty,n} = \sup \left\{ \left| \begin{bmatrix} 0 & a \\ a^* & 0 \end{bmatrix} (u) \right| : u \in K_{2n} \right\} \text{ for all } a \in A_0(K_n, M_n(V)).$$

Step-5

$$A_0(K_n, M_n(V))^+ := \{a \in A_0(K_n, M_n(V))_{sa} : a(u) \geq 0 \ \forall u \in K_n\}.$$

- If $a \in A_0(K_m, M_m(V))^+$, $b \in A_0(K_n, M_n(V))^+$ and $\alpha \in \mathbb{M}_{m,n}$, we have
 - $\bullet \quad \alpha^* a \alpha \in A_0(K_n, M_n(V))^+,$
 - 2 $a \oplus b \in A_0(K_{m+n}, M_{m+n}(V))^+$.

Step-6 $A_0(K_n, M_n(V))$ is a normed linear space equipped with norm

$$||a||_{\infty,n} = \sup \left\{ \left| \begin{bmatrix} 0 & a \\ a^* & 0 \end{bmatrix} (u) \right| : u \in K_{2n} \right\} \text{ for all } a \in A_0(K_n, M_n(V)).$$

Step-7

If $a \in A_0(K_n, M_n(V))_{sa}$, then we have

$$||a||_{\infty,n}=\sup\{|a(v)|:v\in \mathcal{K}_n\}.$$

Step-8 If $a \in A_0(K_n, M_n(V))$.

$$||a^*||_{\infty,n}=||a||_{\infty,n}.$$

Step-8 If $a \in A_0(K_n, M_n(V))$.

$$||a^*||_{\infty,n} = ||a||_{\infty,n}.$$

Step-9 $\{\|\cdot\|_{\infty,n}\}$ satisfies the following conditions:

1 If $a \in A_0(K_m, M_m(V)), b \in A_0(K_n, M_n(V))$; then

$$||a \oplus b||_{\infty,m+n} = \max\{||a||_{\infty,m}, ||b||_{\infty,n}\}.$$

Step-8 If $a \in A_0(K_n, M_n(V))$.

$$||a^*||_{\infty,n} = ||a||_{\infty,n}.$$

Step-9 $\{\|\cdot\|_{\infty,n}\}$ satisfies the following conditions:

- If $a \in A_0(K_m, M_m(V)), b \in A_0(K_n, M_n(V))$; then $\|a \oplus b\|_{\infty, m+n} = \max\{\|a\|_{\infty, m}, \|b\|_{\infty, n}\}.$
- ② if $a \in A_0(K_m, M_n(V)), \alpha \in \mathbb{M}_{m,n}$ and $\beta \in \mathbb{M}_{n,m}$;

$$\|\alpha a\beta\|_{\infty,m} \leq \|\alpha\| \|a\|_{\infty,n} \|\beta\|$$

Step-8 If $a \in A_0(K_n, M_n(V))$.

$$||a^*||_{\infty,n} = ||a||_{\infty,n}.$$

Step-9 $\{\|\cdot\|_{\infty,n}\}$ satisfies the following conditions:

- ① If $a \in A_0(K_m, M_m(V)), b \in A_0(K_n, M_n(V))$; then $\|a \oplus b\|_{\infty, m+n} = \max\{\|a\|_{\infty, m}, \|b\|_{\infty, n}\}.$
- ② if $a \in A_0(K_m, M_n(V)), \alpha \in \mathbb{M}_{m,n}$ and $\beta \in \mathbb{M}_{n,m}$;

$$\|\alpha a\beta\|_{\infty,m} \leq \|\alpha\|\|a\|_{\infty,n}\|\beta\|$$

$$\|b\|_{\infty,n} \leq \max\{\|a\|_{\infty,n}, \|c\|_{\infty,n}\}. \quad \text{if } \quad \text{if }$$

Continued···

Step-10 Let us define a map

$$\Phi_n: A_0(K_n, M_n(V)) \mapsto M_n(A_0(K_1, V))$$
 given by

$$\phi_n(a) = [a_{i,j}], \tag{1}$$

where $a_{i,j}(v) = \tilde{a}(\varepsilon_{i,j} \otimes v)$ for all $v \in K_1$.

Continued···

Step-10 Let us define a map

$$\Phi_n: A_0(K_n, M_n(V)) \mapsto M_n(A_0(K_1, V))$$
 given by

$$\phi_n(a) = [a_{i,j}], \tag{1}$$

where $a_{i,j}(v) = \tilde{a}(\varepsilon_{i,j} \otimes v)$ for all $v \in K_1$.

Step-11

 $\Phi_n: A_0(K_n, M_n(V)) \mapsto M_n(A_0(K_1, V))$ is a *-isomorphism.

Continued···

Step-10 Let us define a map

$$\Phi_n: A_0(K_n, M_n(V)) \mapsto M_n(A_0(K_1, V))$$
 given by

$$\phi_n(a) = [a_{i,j}], \tag{1}$$

where $a_{i,j}(v) = \tilde{a}(\varepsilon_{i,j} \otimes v)$ for all $v \in K_1$.

Step-11

 $\Phi_n: A_0(K_n, M_n(V)) \mapsto M_n(A_0(K_1, V))$ is a *-isomorphism.

Step -12 We transport the **order** and the **norm structures** to $M_n(A_0(K_1, V))$ via isomorphism from $A_0(K_n, M_n(V))$ as follows:

$$[a_{i,i}] \in M_n(A_0(K_1, V))^+$$

if and only if

$$\sum_{i,j=1}^{n} \tilde{a_{i,j}}(v_{i,j}) \ge 0 \tag{2}$$

for all $[v_{i,j}] \in K_n$ and

$$\|[a_{i,j}]\|_n = \|\Phi_n^{-1}([a_{i,j}])\|_{\infty,n}$$
 for all $[a_{i,j}] \in M_n(A_0(K_1,V))$ (3)

Step-13 Now $(A_0(K_1, V), \{M_n(A_0(K_1, V))^+\}, \{\|.\|_n\})$ is a matrix ordered and L^{∞} -matricially normed space such that

- * is an isometry,
- ② If $[a_{i,j}], [b_{i,j}], [c_{i,j}] \in M_n(A_0(K_1, V))_{sa}$ with

$$[a_{i,j}] \leq [b_{i,j}] \leq [c_{i,j}],$$

we have

$$||[b_{i,j}]||_n \leq \max\{||[a_{i,j}]||_n, ||[c_{i,j}]||_n\}.$$

Hence, $\{A_0(K_n, M_n(V))\}$ is **complete isometrically, completely order isomorphic** to a \mathbb{C}^* -ordered operator space.

L^1 -regularly embedded (G.- Karn)

Let $\{K_n\}$ be an L^1 -matrix convex set in a *-locally convex space V. Then $\{K_n\}$ is called L^1 -regularly embedded in V if $L_1(= \operatorname{lead}(K_1))$ is regularly embedded in V_{sa} . In other words,

- $oldsymbol{0}$ L_1 is compact and convex; and
- 2 $\chi: V_{sa} \to (A(L_1)_{sa}^*)_{w*}$ is a linear homeomorphism.

Here $\chi(w)(a) = \lambda a(u) - \mu a(v)$ for all $a \in A(L_1)_{sa}$ if $w = \lambda u - \mu v$ for some $u, v \in L_1$ and $\lambda, \mu \in \mathbb{R}^+$.

L^1 -regularly embedded (G.- Karn)

Let $\{K_n\}$ be an L^1 -matrix convex set in a *-locally convex space V. Then $\{K_n\}$ is called L^1 -regularly embedded in V if

 L_1 (= lead(K_1)) is regularly embedded in V_{sa} . In other words,

- \bullet L_1 is compact and convex; and
- 2 $\chi: V_{sa} \to (A(L_1)_{sa}^*)_{w*}$ is a linear homeomorphism.

Here $\chi(w)(a) = \lambda a(u) - \mu a(v)$ for all $a \in A(L_1)_{sa}$ if $w = \lambda u - \mu v$ for some $u, v \in L_1$ and $\lambda, \mu \in \mathbb{R}^+$.

L^1 -matricial cap (G.- Karn)

Let $\{K_n\}$ be an L^1 -matrix convex set. Then $\{L_n\}$ is called L^1 -matricial cap for V if

- 0 / :- -----
- \bullet L_1 is convex and
- ② if $v \in L_{m+n}$ with $v = \begin{bmatrix} v_{11} & v_{12} \\ v_{12}^* & v_{22} \end{bmatrix}$ for some $v_{11} \in K_m$, $v_{22} \in K_n$ and $v_{12} \in M_{m,n}(V)$ so that $v_{11} = \alpha_1 \widehat{v_1}$, $v_{22} = \alpha_{22} \widehat{v_2}$ for some $\widehat{v_1} \in L_m$, $\widehat{v_2} \in L_n$ and $\alpha_1, \alpha_2 \in [0, 1]$, then $\alpha_1 + \alpha_2 = 1$.

1/24

Characterization of operator system

Theorem (G.- Karn)

Let $\{K_n\}$ be an L^1 -regularly embedded in V such that $\{L_n\}$ is an L^1 -matricial cap for V. Then

- **1** $A_0(K_n, M_n(V))$ is an **order unit space** for all $n \in \mathbb{N}$.
- **2** $\{A_0(K_1, V), \{M_n(A_0(K_1, V))\}, e\}$ is an abstract operator system.

A. Ghatak, A. Karn, Qunatization of A₀(K)-spaces, Communicated.

References

- M. D. Choi, E. G. Effros, *Injectivity and Operator Spaces*, J. Funct. Anal., **24** (1977), 156–209.
- E. G. Effors, Z. J. Ruan, On the Abstract Characterization of Operator Spaces, Proc. Amer. Math. Soc., 119, (1993), 579–584.
- **3** A. Ghatak, A. Karn, Quantization of $A_0(K)$ -spaces, Preprint.
- A. K. Karn, Order Embedding of Matrix Ordered Spaces, Bull. Aust. Math. Soc., 84, (2011) 10–18.
- C. Webster, S. Winkler, Krein Milman Theorem for Operator Convexity, Trans. Amer. Math. Soc., 351, (1999), 307–322.
- W. Werner, *Subspaces of L(H) that are* *-*invarient*, J. Funct. Anal., **193**, (2002), 207–223.

THANK YOU!